Could Tight Oil Go Global?
Tight oil production is today a largely US phenomenon. From less than 0.5 mb/d in 2010, production has surged to around 6 mb/d in 2018 and this growth shows little sign of slowing down any time soon.
In the most recent World Energy Outlook, tight oil output continues to rise until well into the 2020s in the New Policies Scenario, reaching more than 9 mb/d. As a result, the United States reinforces its position as the world’s largest oil producer, accounting for almost one in every five barrels of production by 2025; it also become a net oil exporter.
This dramatic turnaround in fortunes has had profound implications for energy markets, and the consequences are also being felt beyond energy, for example in the renaissance of the US petrochemical industry. This example has also led many other countries to ask whether they too could experience a shale revolution.
So, what are the prospects for tight oil going global?
One key issue with tight oil production is the sheer number of wells which are needed to reach material levels of production.
Production from an individual tight oil well declines very rapidly after it has been completed.
If the rate of drilling drops, production is likely to follow suit shortly after. For example, in 2017, around 8 500 tight oil wells were completed in the United States and nearly 70% of these were needed simply to compensate for declines at existing wells.
If no new wells had been completed after the end of 2017, we estimate that tight crude oil production would have fallen by around 1.8 mb/d within 12 months and by a further 0.6 mb/d in the next year.
The eternal tussle between innovation and depletion
A critical determinant of future production is having a sizeable resource potential. In theory, there are major tight oil resources in multiple countries. The latest assessment estimates that there are around 350 billion tight oil barrels that are technically recoverable outside the United States (triple the amount in the United States).
However, estimates of resource potential are subject to a huge degree of uncertainty.
In some cases, this results in major upward revisions and in other cases to substantial downward revisions. For example, a recent reassessment by the United States Geological Survey (USGS) of the Permian shale play indicated that there were around 20 billion barrels more technically recoverable tight crude oil resources than was previously thought.
In our modelling, increases in the estimated US tight oil resource potential translate into higher projected production levels. For example, tight oil resources in the WEO-2018 (at about 115 billion barrels) are around 10% greater than in the WEO-2017, and production in 2025 is around 0.9 mb/d higher as a result.
Many observers expect further upward revisions in US resource estimates in the coming years. These should not be taken for granted, but they would be necessary to meet oil demand in the New Policies Scenario if the US shale industry is to compensate for a continued shortage of new conventional projects elsewhere.
In the end, as the United States has demonstrated, the only way to prove whether a resource is technically or economically producible is through drilling.
A huge theoretical resource potential is no real indication that a shale industry can be successfully developed.
Tight oil is a relatively new production technique and many of the increases in resources in the United States have stemmed from technological progress.
Yet even with continued innovation in the New Policies Scenario many of the most productive areas in the United States start to show signs of depletion by the mid-2020s (with the recoverable resource potential that we assume).
This means the average well drilled in 2025 is less productive than today and so a larger number of wells need to be completed to maintain or increase production.
We estimate that achieving more than nine mb/d tight crude oil production in the New Policies Scenario in the United States would require around 20 000 new wells to be drilled and completed in 2025. Thereafter, with our current estimate for recoverable resources, production starts to fall gradually.
How does the success of US shale affect prospects elsewhere?
The knowledge and expertise gained in the United States can clearly be of value in developing tight oil resources in other parts of the world. But, perhaps ironically, one reason for the lack of take-off of shale production (for both oil and gas) to date has been the degree of success in the United States.
US tight oil was a central reason for the drop in the oil price in 2014 (and again in recent months), which dimmed the economics of similar production elsewhere.
The US shale sector has also absorbed a large portion of the attention and capital spending of international companies who could have otherwise invested elsewhere. Outside the United States, shale remains a relatively high-cost, poorly-understood resource which poses challenges stretching from access to land and availability of water to bureaucratic hurdles.
A critical mass of activity and learning is necessary to generate economies of scale and bring down breakeven prices. But getting the momentum going for this is tough.
To date, only a limited number of countries have achieved some success with tight oil production. Canada produces around 0.4 mb/d tight oil and initial drilling in Argentina has been promising and suggested that resources could be large. Production there stands at around 50 kb/d today.
Results have been less promising elsewhere, China, South Africa, and Ukraine all experimented with tight oil, for example, but production targets have been lowered or drilling abandoned altogether.
Despite these near-term difficulties, the New Policies Scenario does eventually see some spread in tight oil. Projected growth is most apparent in Argentina, Canada, Russia and Mexico, and there are also increases in Australia, China and the United Arab Emirates.
By 2040, there is more than 3.5 mb/d of tight oil production from areas outside the United States. Crucially, the upturn in tight oil production does not really occur until after production in the United States reaches its peak of production.
As it becomes more difficult for companies to find commercial resources to develop, this encourages them to seek out opportunities elsewhere. There is, of course, a high degree of uncertainty in these projections. Developments could take off sooner if ongoing drilling activity is particularly successful (in Argentina for example), but could also be delayed if the oil price is suppressed for extended periods.
What if the world accelerated a transition away from hydrocarbons? Lower oil demand and prices in our Sustainable Development Scenario would pose a challenge to both the established shale industry in the United States and the more nascent industry elsewhere.
Yet tight oil is also arguably a logical choice for many companies faced with uncertainty about the future. Decline rates are high and so there is less need for a long-term outlook on demand and prices. Operators need just enough market visibility to know when to increase or throttle back on drilling.
Tight oil is also generally a relatively light crude oil that is well suited to provide the kinds of products in most demand in the Sustainable Development Scenario.
So, an accelerated energy transition would not necessarily constrain tight oil production as much as other types of resources. But, as we have emphasised in previous WEO analysis, prospects in individual jurisdictions also depend on the way that social and environmental concerns are addressed, as the scale and intensity of shale development can have major implications for local communities, land use and water resources, as well as for emissions.
In the world depicted in the Sustainable Development Scenario, there is likely to be even greater attention placed on these aspects.
The prospects for tight oil going global depend not just on what is available below the surface, but also on how effectively and credibly these ‘above-ground’ issues are managed.
Source: Global Energy World